The unwavering commitment of regulatory T cells in the suppression of autoimmune encephalomyelitis: another aspect of immune privilege in the CNS.

نویسنده

  • Benjamin M Segal
چکیده

FoxP3(+) regulatory T (Treg) cells accumulate in the central nervous system (CNS) during experimental autoimmune encephalomyelitis and have been shown to limit the extent of neuroinflammation and to facilitate clinical recovery. The recent demonstration that Treg cells lose FoxP3 expression and assume effector cell characteristics upon stimulation with proinflammatory cytokines has raised questions about their stability in the inflamed CNS. In this issue of the European Journal of Immunology, O'Connor et al. [Eur. J. Immunol. 2012. 42: 1164-1173] show that CNS-infiltrating Treg cells maintain their suppressor phenotype by downregulating the IL-6 receptor. This commentary discusses the finding particularly with relevance to therapy of multiple sclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics of T cell response in the testes and CNS during experimental autoimmune encephalomyelitis: Simultaneous blood-brain and -testis barrier permeability?

Objective(s): Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are regarded as autoimmune diseases of the central nervous system (CNS).  The CNS, testes, and eyes are immune privileged sites.  It was initially presumed that ocular involvement in EAE and infertility in MS are neural-mediated.  However, inflammatory molecules...

متن کامل

Increase in CD4+Foxp3+ Regulatory T cells and Amelioration of Experimental Autoimmune Encephalomyelitis in Mice Treated with IL-27

Background and purpose: In multiple sclerosis (MS) and its murine model, experimental autoimmune encephalomyelitis (EAE), chronic inflammation damages the myelin of central nervous system. Recently, interleukin-27 (IL-27) has been recognized as a feasible choice for treatment of autoimmune diseases such as MS due to its anti-inflammatory properties. However, the underlying mechanisms have not y...

متن کامل

P 140: Stem Cells in Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...

متن کامل

سلول‏های بنیادی مزانشیمی و کاربرد آنها در درمان بیماری‏های خود ایمن: مقاله مروری

Mesenchymal Stem Cells (MSCs) are well known as the regulator of the immune system. These multipotent non-hematopoietic progenitor cells have been originally isolated from bone marrow, and later on found in several other tissues, such as skeletal muscle, umbilical cord blood, adipose and fetal liver tissues. Immunomodulatory effects of MSCs on a variety of immune cells such as T and B lymphocyt...

متن کامل

Concomitant Increase of OX40 and FOXP3 Transcripts in Peripheral Blood of Patients with Breast Cancer

Background: Regulatory T cells (T-regs) have an important role in cancer by suppression of protective antitumor immune responses. Regulatory T cells express the forkhead/winged helix transcription factor (FOXP3) and OX40 molecules which have important regulatory roles in the immune system. Objective: To evaluate FOXP3 and OX40 transcripts in the peripheral blood mononuclear cells of women with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European journal of immunology

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2012